Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Methods Mol Biol ; 2795: 55-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594527

RESUMO

Temperature is one of the most prominent environmental factors that influence plant immunity. Depending on the plant-pathogen system, increased temperature may inhibit or enhance disease resistance or immunity in plants. Measuring the effect of temperature on plant immunity is the first step toward revealing climate effects on plant-pathogen interactions and molecular regulators of temperature sensitivity of plant immunity. Quantification of plant disease resistance or susceptibility under different temperatures can be accomplished by assessing pathogen growth over time in infected plants or tissues. Here, we present a protocol for quantifying pathogen growth in the most studied system of Arabidopsis thaliana and Pseudomonas syringae pathovar tomato (Pst) DC3000. We discuss important factors to consider for assaying pathogen growth in plants under different temperatures. This protocol can be used to assess temperature sensitivity of resistance in different plant genotypes and to various pathovars.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Resistência à Doença/genética , Temperatura , Pseudomonas syringae/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Sci ; 343: 112071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508495

RESUMO

The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptores Mitogênicos/genética , Espécies Reativas de Oxigênio/metabolismo , ATPases Translocadoras de Prótons/genética , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
BMC Genomics ; 25(1): 65, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229017

RESUMO

BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Fenótipo
4.
Plant Physiol ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245840

RESUMO

The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to Pseudomonas syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against Pseudomonas syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.

5.
J Transl Med ; 22(1): 77, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243248

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na+/K+ pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage. Novel PST3093 derivatives have been recently developed for oral (chronic) HF treatment; compound 8 was selected among them and here characterized. METHODS: Effects of compound 8 were evaluated in a context of SERCA2a depression, by using streptozotocin-treated rats, a well-known model of diastolic dysfunction. The impact of SERCA2a stimulation by compound 8 was assessed at the cellular level ad in vivo, following i.v. infusion (acute effects) or oral administration (chronic effects). RESULTS: As expected from SERCA2a stimulation, compound 8 induced SR Ca2+ compartmentalization in STZ myocytes. In-vivo echocardiographic analysis during i.v. infusion and after repeated oral administration of compound 8, detected a significant improvement of diastolic function. Moreover, compound 8 did not affect electrical activity of healthy guinea-pig myocytes, in line with the absence of off-target effects. Finally, compound 8 was well tolerated in mice with no evidence of acute toxicity. CONCLUSIONS: The pharmacological evaluation of compound 8 indicates that it may be a safe and selective drug for a mechanism-based treatment of chronic HF by restoring SERCA2a activity.


Assuntos
Etiocolanolona/análogos & derivados , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Cobaias , Insuficiência Cardíaca/metabolismo , Doença Crônica , Inibidores Enzimáticos , Cardiotônicos/uso terapêutico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
6.
Harmful Algae ; 131: 102559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212088

RESUMO

To understand environmental effects affecting paralytic shellfish toxin production of Centrodinium punctatum, this study examined the growth responses, and toxin contents and profiles of a C. punctatum culture exposed to drastic changes of temperature (5-30 °C) and salinity (15-40). C. punctatum grew over a temperature range of 15-25 °C, with an optimum of 20 °C., and over a salinity range of 25-40, with optimum salinities of 30-35. This suggests that C. punctatum prefers relatively warm waters and an oceanic habitat for its growth and can adapt to significant changes of salinity levels. When C. punctatum was cultivated at different temperature and salinity levels, the PST profile included four major analogs (STX, neoSTX, GTX1 and GTX4, constituted >80 % of the profile), while low amounts of doSTX and traces of dc-STX and dc-GTX2 were also observed. Interestingly, though overall toxin contents did not change significantly with temperature, increases in the proportion of STX, and decreases in proportions in GTX1 and GTX4 were observed with higher temperatures. Salinity did not affect either toxin contents or profile from 25 to 35. However, the total toxin content dropped to approximately half at salinity 40, suggesting this salinity may induce metabolic changes in C. punctatum.


Assuntos
Dinoflagelados , Toxinas Biológicas , Temperatura , Salinidade , Oceanos e Mares
7.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005567

RESUMO

Evaluating the stray light cancellation performance of an optical system is an essential step in the search for superior optical systems. However, the existing evaluation methods, such as the Monte Carlo method and the ray tracing method, suffer from the problems of vast arithmetic and cumbersome processes. In this paper, a method for a rapid stray light performance evaluation model and quantitatively determining high-magnitude stray light outside the field of view are proposed by adopting the radiative transfer theory based on the scattering property of the bidirectional scattering distribution function (BSDF). Under the global coordinates, based on the derivation of the light vector variation relationship in the near-linear system, the specific structural properties of the off-axis reflective optical system, and the specular scattering properties, a fast quantitative evaluation model of the optical system's stray light elimination capability is constructed. A loop nesting procedure was designed based on this model, and its validity was verified by an off-axis reflective optical system. It successfully fitted the point source transmittance (PST) curve in the range of specular radiation reception angles and quantitatively predicted the prominence due to incident stray light outside the field of view. This method does not require multiple software to work in concert and requires only 10-5 orders of magnitude of computing time, which is suitable for the rapid stray light assessment and structural screening of off-axis reflective optical systems with a good symmetry. The method is promising for improving imaging radiation accuracy and developing lightweight space cameras with low stray light effects.

8.
Biology (Basel) ; 12(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887065

RESUMO

By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.

10.
Sensors (Basel) ; 23(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37688080

RESUMO

As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface imaging width of more than 2300 km, which can complete two coverage observations of global targets per day with high detection efficiency. According to the characteristics of the operating orbit and large-angle scanning imaging of MERSI, a stray light radiation model of the polar-orbiting spectrometer is constructed, and the design requirements of stray light suppression are proposed. Using the point source transmittance (PST) as the merit function of the stray light analysis method, the instrument was simulated with all stray light suppression optical paths, and the effectiveness of stray light elimination measures was verified using the stray light test. In this paper, the full-link method of "orbital stray light radiation model-system, internal and external simulation design-system analysis and actual test comparison verification" is proposed, and there is a maximum decrease in the system's PST by about 10 times after applying the stray light suppression's optimization design, which can provide a general method for stray light suppression designs for polar-orbit spectral imagers.

11.
Diagn Microbiol Infect Dis ; 107(4): 116054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748232

RESUMO

Phage therapy, particularly for infections due to multi-drug-resistant bacteria, is increasingly gaining in importance. Consecutively, there is a rising need for phage testing in routine diagnostic laboratories. The incubation time of phage susceptibility testing for detecting lytic phage activity on phage/host strain combinations was evaluated. A standardized approach for routine diagnostic laboratories provided reliably detectable lysis zones within 8 hours.


Assuntos
Bacteriófagos , Humanos , Laboratórios
12.
Ecol Evol ; 13(8): e10370, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37546571

RESUMO

An important objective of evolutionary biology has always been to grasp the evolutionary and genetic processes that contribute to speciation. The present work provides the first detailed account of the genetic and physiological adaptation to changing environmental temperatures as well as the reasons causing intraspecific divergence in the Eothenomys miletus from the Hengduan Mountain (HM) region, one of the biodiversity hotspots. One hundred sixty-one E. miletus individuals from five populations in the HM region had their reduced-representation genome sequenced, and one additional individual from each community had their genomes resequenced. We then characterized the genetic diversity and population structure of each population and compared the phenotypic divergence in traits using neutral molecular markers. We detected significant phenotypic and genetic alterations in E. miletus from the HM region that were related to naturally occurring diverse habitats by combining morphometrics and genomic techniques. There was asymmetric gene flow among the E. miletus populations, indicating that five E. miletus populations exhibit an isolation-by-island model, and this was supported by the correlation between F ST and geographic distance. Finally, P ST estimated by phenotypic measures of most wild traits were higher than differentiation at neutral molecular markers, indicating directional natural selection favoring different phenotypes in different populations must have been involved to achieve this much differentiation. Our findings give information on the demographic history of E. miletus, new insights into their evolution and adaptability, and literature for studies of a similar nature on other wild small mammals from the HM region.

13.
Plants (Basel) ; 12(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571011

RESUMO

Glucosinolates and their degradation products have a wide range of actions and are important components of plant defense. NSP2 (nitrile-specific protein 2) is a key regulator in the breakdown process of glucosinolates. However, the precise function of NSP2 in plant disease resistance beyond its role in glucosinolate degradation is still unclear. In this study, we discovered that NSP2 which was induced by Pst DC3000, influenced PR genes expression and reactive oxygen burst. Additionally, omics analysis revealed that NSP2 was engaged in plant-pathogen interaction and several hormone signal transduction pathways. Furthermore, immunoprecipitation-tandem mass spectrometry analysis (IP-MS), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation demonstrated that NSP2 interacts with MPK3. Genetic analysis shows that NSP2 may be a function downstream of MPK3. Upon pathogen inoculation, NSP2 protein levels increase while MPK3 protein levels decrease. Moreover, the level of phosphorylated NSP2 decreases. Taken together, this study sheds light on a new mode of synergistic action between NSP2 and MPK3 in the disease resistance process.

14.
Harmful Algae ; 127: 102474, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544674

RESUMO

This study presents the first evidence that a diverse suite of phycotoxins is not only being actively produced by the toxigenic algal communities in the Canadian Arctic waters, but is also entering the marine food web. We detected measurable amounts of Amnesic Shellfish Toxins (ASTs) and Paralytic Shellfish Toxins (PSTs), as well as trace amounts of other lipophilic toxin groups including pectenotoxins, yessotoxins, and cyclic imines, in bivalves collected from the Canadian Beaufort Sea in 2014 and 2018. There appear to be species-specific differences in accumulation and retention of AST by Arctic bivalves, with significantly higher concentrations recorded in Nuculanidae than Propeamussiidae, likely reflecting physiological and allometric differences. We further confirm the omnipresence of potentially toxic taxonomically-versatile phytoplankton communities in the western Canadian Arctic comprising Pseudo-nitzschia delicatissima group, P. obtusa, Dinophysis acuminata, Prorocentrum minimum, Alexandrium tamarense, and Gymnodinium spp. Although measurements of actual toxicity levels and profiles of these species at the time of sampling fall outside of the scope of this study, we show that high abundance and competitive success of known AST-producers, Pseudo-nitzschia spp., are possible in Canadian Arctic waters. In 2014, a strong dominance of Pseudo-nitzschia spp. was observed at a few shallow coastal stations, representing nearly 40% of the total phytoplankton cell abundances with > 106 cells/L at the depth of maximum chlorophyll a. We further describe oceanographic conditions conducive to high abundances of toxin-producing algae, indicating that temperature is likely a key factor. Even though measured AST and PST concentrations in bivalve tissue remained well below the Health Canada's levels at which monitored fisheries would close, i.e., 5% and 4%, respectively, their presence demonstrate that phycotoxin accumulation is occurring in food webs of the Canadian Beaufort Sea. Yet, the phycotoxin production controls and trophic transfer mechanisms remain unknown. Canadian Arctic marine ecosystems are rapidly changing and temperatures are expected to continue to increase. Given that these changes simultaneously affect multiple, and often co-occurring, species of primary producers, adaptive capacity is likely to play an important role in the structure of phytoplankton communities in the Canadian Arctic.


Assuntos
Bivalves , Diatomáceas , Animais , Toxinas Marinhas/toxicidade , Ecossistema , Clorofila A , Canadá , Fitoplâncton
15.
Harmful Algae ; 127: 102465, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544681

RESUMO

The green-lipped mussel (GLM) Perna canaliculus is an economically, ecologically, and culturally important species in Aotearoa New Zealand. Since 2011, harmful algal blooms (HABs) of Alexandrium spp. have occurred annually in the Marlborough Sounds, the largest GLM aquaculture region in New Zealand. Across a similar timeframe, there has been a severe reduction in wild spat (juvenile mussel) catch. This research investigated the effects of Alexandrium pacificum (which produces paralytic shellfish toxins; PSTs) and A. minutum (a non-producer of PSTs) on the development of four GLM larval life stages (gametes, embryos, D-stage and settlement). Early life stages of GLM were exposed to environmentally relevant concentrations of Alexandrium spp. as whole cell, lysate and filtrate treatments. A 48-h exposure of embryos to whole A. pacificum cells at 500 cells mL-1 caused lysis of embryos, severe abnormalities, and reduced development through to veliger (D-stage) larvae by 85%. GLM growth was impaired at cell concentrations as low as 250 cells mL-1 during a 4-day exposure of D-stage larvae to both Alexandrium spp. Exposure of GLM to both whole and lysed treatments of Alexandrium spp. at 500 cells mL-1 resulted in halved larval growth rates (2.00 µm day-1 vs 4.48 µm day-1 in the control) and growth remained impeded during a 4-day recovery period. Both A. pacificum and A. minutum were found to negatively impact D-larvae. Both whole-cell and lysed-cell treatments of A. pacificum had similar negative effects, suggesting that Alexandrium spp. toxicity to D-larvae is independent of PSTs. Additionally, cell membrane-free treatments of A. pacificum had no negative effects on embryo development, indicating that cell surface-associated bioactive compounds may be responsible for the observed negative effects during this early life stage. Conversely, non-PST-producing A. minutum was toxic to D-stage larvae but not to embryos; larval growth was reduced following a brief 1 h exposure of sperm to cell membrane-free treatments of A. pacificum. No effects were recorded in GLM larvae exposed during settlement, highlighting the potential for differences in susceptibility of early life stages to Alexandrium spp. exposure and the influence of exposure durations. In the wild, blooms of Alexandrium spp. can persist for several months, reaching cell densities higher than those investigated in the present study, and as such may be detrimental to the vulnerable early life stages of GLM.


Assuntos
Dinoflagelados , Perna (Organismo) , Animais , Larva , Sementes , Proliferação Nociva de Algas
16.
Heliyon ; 9(6): e17018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484312

RESUMO

Harmful algae blooms (HABs) are a conspicuous phenomenon that affect the coastal zone worldwide. Aquaculture industry zones are not excluded from being affected by HAB that cause organism mortality and jeopardize their innocuity due to the contamination by phytotoxins with the concomitant economic losses. Direct ingestion of metabolites from HAB species or organisms contaminated with phycotoxins together with dermal absorption of dissolved metabolites (DM), including toxins, are the two main routes of poisoning. From these poisoning routes, the effect of DM, particularly paralytic shellfish toxins (PST), has been relatively understudied. This intoxication route can be conspicuous and could be involved in many significant mortalities of cultivated marine organisms. In this study, white shrimp juveniles (2.1 g wet weight) of Litopenaeus vannamei were exposed to extracts of 104, 105 and 106 cells/L of the dinoflagellate Gymnodinium catenatum, a PST producer. The experiment ended after 17 h of exposure when shrimps exposed to 106 cells/L extract started to die and the rest of the shrimps, from this and other treatments, did not respond to gentle physical stimulus and their swimming activity was low and erratic. Toxin concentrations were determined using high performance liquid chromatography while qualitative and quantitative histological damages were assessed on the tissues. In general, most toxins were accumulated in the hepatopancreas where more than 90% were found. Other tissues such as intestine, muscle, and gills contained less than 10% of toxins. Compared to the control, the main significative tissue damages were, loss of up to 80% of the nerve cord, 40% of the muscle coverage area, and reduction of the gill lamella width. Also, atrophy in hepatopancreas was observed, manifested by a decrease in the height of B cells, lumen degeneration and thinning of tubules. Some damages were more evident when shrimps were exposed to higher concentrated extracts of G. catenatum, however, not all damages were progressive and proportional to the extract concentration. These data confirm that PST dissolved enter the shrimp, possibly via the gills, and suggest that dissolved metabolites, including PST, may cause tissue damage. Other dissolved metabolites produced by G. catenatum, alone or in synergy, may also be involved. These results also pointed out the importance of dissolved molecules produced for this dinoflagellate and the potential effect on cultured shrimp.

17.
Theranostics ; 13(10): 3451-3466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351167

RESUMO

Rationale: The 2019 coronavirus disease (COVID-19) pandemic poses a significant threat to human health. After SARS-CoV-2 infection, major clinical concerns are organ damage and possible sequelae. Methods: In this study, we analyzed serum multi-omics data based on population-level, including healthy cohort, non-COVID-19 and COVID-19 covered different severity cohorts. We applied the pseudo-SpatioTemporal Consistency Alignment (pST-CA) strategy to correct for individualized disease course differences, and developed pseudo-deterioration timeline model and pseudo-recovery timeline model based on the "severe index" and "course index". Further, we comprehensively analyzed and discussed the dynamic damage signaling in COVID-19 deterioration and/or recovery, as well as the potential risk of sequelae. Results: The deterioration and course models based on the pST-CA strategy can effectively map the activation of blood molecular signals on cellular, pathway, functional and disease phenotypes in COVID-19 deterioration and throughout the disease course. The models revealed the neurological, cardiovascular, and hepatic toxicity present in SARS-CoV-2. The abundance of differentially expressed proteins and the activity of upstream regulators were comprehensively analyzed and evaluated to predict possible target drugs for SARS-CoV-2. On molecular docking simulation analysis, it was further demonstrated that blocking CEACAM1 is a potential therapeutic target for SARS-CoV-2. Conclusions: Clinically, the risk of organ failure and death in COVID-19 patients rises with increasing number of infections. Individualized sequelae prediction for patients and assessment of individualized intervenable targets and available drugs in combination with the upstream regulator analysis results are of great clinical value.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Pulmão , Fenótipo
18.
Harmful Algae ; 126: 102439, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290888

RESUMO

Although the typical framework for studies and models of bloom dynamics in toxigenic phytoplankton is predominantly based on abiotic determinants, there is mounting evidence of grazer control of toxin production. We tested for the effect of grazer control of toxin production and cell growth rate during a laboratory-simulated bloom of the dinoflagellate Alexandrium catenella. We measured cellular toxin content and net growth rate when cells were exposed to copepod grazers (direct exposure), copepod cues (indirect exposure), and no copepods (control) throughout the exponential, stationary, and declining phases of the bloom. During the simulated bloom, cellular toxin content plateaued after the stationary phase and there was a significantly positive relationship between growth rate and toxin production, predominantly in the exponential phase. Grazer-induced toxin production was evident throughout the bloom, but highest during the exponential phase. Induction was greater when cells were directly exposed to grazers rather than their cues alone. In the presence of grazers toxin production and cell growth rate were negatively related, indicating a defense-growth trade-off. Further, a fitness reduction associated with toxin production was more evident in the presence than the absence of grazers. Consequently, the relationship between toxin production and cell growth is fundamentally different between constitutive and inducible defense. This suggests that understanding and predicting bloom dynamics requires considering both constitutive and grazer-induced toxin production.


Assuntos
Copépodes , Dinoflagelados , Animais , Fitoplâncton , Toxinas Marinhas
19.
Clin Neurol Neurosurg ; 230: 107790, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229953

RESUMO

BACKGROUND: The Processing Speed Test (PST), a validated iPad®-based cognitive screening test for MS, has been applied to the cognitive assessment of Japanese MS patients using US normative data. METHODS: To develop PST normative data from Japanese healthy volunteers and compare the PST score distribution between Japanese and US healthy volunteers, 254 healthy Japanese-speaking volunteers were enrolled and stratified by age (20-65 years). Potential participants with a Mini-Mental State Examination score < 27 were excluded. PST raw scores (total correct) were from the Japan cohort and compared with age-restricted US normative data and propensity score-matched data created by matching sex, age, and educational level from a published study of 428 healthy participants. PST score distributions and standardized z-scores were compared using t-test and Kolmogorov-Smirnov test statistics. RESULTS: The mean age of the Japan cohort was 44.1 years. The PST scores of Japanese volunteers were significantly different from those of the age-restricted (mean ± SD 61.8 ± 10.1 vs 53.7 ± 10.8; p < 0.001) and the propensity score-matched US cohort (62.1 ± 10.1 vs 53.3 ± 10.6; p < 0.001). CONCLUSION: Regression analyses centered on US normative data could underestimate disease severity in Japanese MS patients, suggesting that separate normative data should be considered for each population sample.


Assuntos
População do Leste Asiático , Velocidade de Processamento , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Cognição , Voluntários Saudáveis , Japão , Testes Neuropsicológicos , Estados Unidos
20.
Evol Appl ; 16(5): 997-1011, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37216028

RESUMO

Invasive species often possess a great capacity to adapt to novel environments in the form of spatial trait variation, as a result of varying selection regimes, genetic drift, or plasticity. We explored the geographic differentiation in several phenotypic traits related to plant growth, reproduction, and defense in the highly invasive Centaurea solstitialis by measuring neutral genetic differentiation (F ST), and comparing it with phenotypic differentiation (P ST), in a common garden experiment in individuals originating from regions representing the species distribution across five continents. Native plants were more fecund than non-native plants, but the latter displayed considerably larger seed mass. We found indication of divergent selection for these two reproductive traits but little overall genetic differentiation between native and non-native ranges. The native versus invasive P ST-F ST comparisons demonstrated that, in several invasive regions, seed mass had increased proportionally more than the genetic differentiation. Traits displayed different associations with climate variables in different regions. Both capitula numbers and seed mass were associated with winter temperature and precipitation and summer aridity in some regions. Overall, our study suggests that rapid evolution has accompanied invasive success of C. solstitialis and provides new insights into traits and their genetic bases that can contribute to fitness advantages in non-native populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...